Delivering a great pitch is an important step in convincing investors to fund a business, but while an effective pitch can get the attention of an investor, it takes more to get them to invest their money. Before committing to a business, investors need to have confidence that the entrepreneur has done their research and that they can explain what their solution is and how it works. The Technical Brief is your opportunity to show investors how much work you have done and how well you know your business.

Part 1. Describe your team's design process.

Write a brief description of your team's process. This is your opportunity to show investors all the thinking that went into inventing your solution and designing your business. Consider using the following prompts to structure your description.

- What problem does your business solution solve? Who are your intended users?
- How did your solution evolve from your initial brainstorming to the final design? What led to these changes?
- What research did you do while designing your solution? How did that research inform your design?
- What are the limitations of your solution? How do you plan to address these limitations?

Part 2. Use the following questions to fully describe your Gaming for Change solution.

1. What is your game about and how do you play it?
a. Provide a brief description of your game, including what the game is about and how you play it.
b. Describe how you incorporated projectile motion in your game.
2. How does your game promote well-being?
a. Describe the features of your game that were designed to improve connectedness and/or promote healthy habits.
b. Explain how these features support connectedness and/or healthy habits.
3. What information will you provide to the game's programmers to help them create realistic projectile motion?
a. For at least two possible projectiles in your game, provide an equation and graph that model the projectile's height vs. time.
b. For at least two possible projectiles in your game, provide an equation and graph that model the projectile's height vs. distance traveled.
