Use the diagram below to figure out how high up the side of the house the ladder reaches.

Use the diagram below to figure out how high up the side of the house the ladder reaches.

P.4: Ladder Application

Use the diagram below to figure out how high up the side of the house the ladder reaches.

\square

Kaden's Method

Kaden's Method
\square

I can use the
Pythagorean
Theorem.
I plug the values
into the theorem and solve for x.

The ladder falls
at a point 23.69 ft . above the ground.

$$
8^{2}+x^{2}=25^{2}
$$

$x^{2}=561$
$a^{2}+b^{2}=c^{2}$

$$
x^{2}=561
$$

$x=23.69$

$$
64+x^{2}=625
$$

$a^{2}+b^{2}=c^{2}$

$$
8^{2}+25^{2}=x^{2}
$$

$$
64+625=x^{2}
$$

$$
x^{2}=689
$$

$$
x=26.25
$$

I can use the
Pythagorean Theorem.

I plug the values into the formula and solve for x.

The ladder falls
at a point
26.25 ft . above the ground.

1) What are the similarities and differences between Kaden and Maddie's methods?

Similarities	Differences

2) Maddie and Kaden got different answers. Who is correct, and why?
3) Find the missing side length.

4) Kaden's friend, Natasha, says that it doesn't really matter which sides of a right triangle are a, b, and c, as long as you use all of the numbers. Is she correct? Explain your thinking.

Whoops! Looks like I put the c-value in the wrong spot. I guess it does matter where you put the numbers!

I plug the values into the formula and solve for x.

