A.3: Alternate Interior and Same Side Interior Angles

Lines r and s are parallel. Alex is asked to find the relationship between $\angle 3$ and $\angle 5$. Morgan is asked to find the relationship between $\angle 3$ and $\angle 6$.

A.3: Alternate Interior and Same Side Interior Angles

Lines r and s are parallel. Alex is asked to find the relationship between $\angle 3$ and $\angle 5$. Morgan is asked to find the relationship between $\angle 3$ and $\angle 6$.

$$
m \angle 3=70^{\circ}
$$

> Morgan's "Corresponding \& Vertical Angles" Method

$$
\begin{aligned}
& 70^{\circ}=70^{\circ} \\
& \angle 3 \cong \angle 6
\end{aligned}
$$

Lines r and s are parallel. Alex is asked to find the relationship between $\angle 3$ and $\angle 5$. Morgan is asked to find the relationship between $\angle 3$ and $\angle 6$.

$$
m \angle 3=70^{\circ}
$$

 Supplementary" Method

Morgan's "Corresponding \& Vertical" Method

1) What are the similarities and differences between Alex and Morgan's methods?

Similarities	Differences

2) Find the measure of all the missing angles. Justify each step you take to find each of the missing angles.

Missing Angle	
$m \angle 1=$	
$m \angle 2=$	
$m \angle 4=$	
$m \angle 5=$	
$m \angle 6=$	
$m \angle 7=$	
$m \angle 8=$	

3) Alex found that $m \angle 3+m \angle 5=180^{\circ}$ and Morgan found that $\angle 3 \cong \angle 6$. Do you think what they found will be true anytime two parallel lines are cut by a transversal? Why or why not?
4) a) Write an equation for the relationship between angles A and B.
b) Write an equation for the relationship between angles A and C.

Morgan and I both learned something new about when two parallel lines are cut by a transversal!

I learned that same-side interior angles are supplementary.

Morgan noticed that alternate interior angles are congruent.

