
What happens to the volume of a cylinder with radius 4 in. and height 3 in. when you scale the radius?

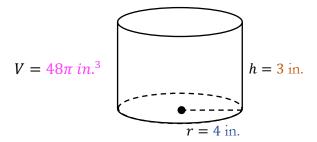
Damien's "Double the Radius" Method

If I double the radius, I have a new radius of 8 in.

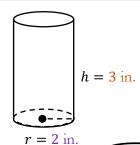
Let me calculate the volume with the new radius.

If I divide the new volume by the original, I see that doubling the radius causes the volume to be four times the original!

$$V = \pi r^2 h$$


$$V = \pi(8)^2(3)$$

$$V = 192\pi \ in.^3$$


$$\frac{192\pi}{48\pi} = 4$$

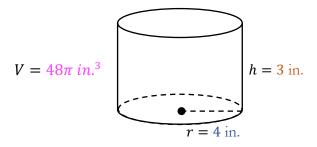
What happens to the volume of a cylinder with radius 4 in. and height 3 in. when you scale the radius?

Sydney's "Halve the Radius" Method

 $V = \pi(2)^2(3)$

 $V = \pi r^2 h$

 $V = 12\pi \ in.^3$


If I halve the height, I have a new radius of 2 in.

Let me calculate the volume with the new radius.

If I divide the new volume by the original, I see that halving the radius makes the volume 1/4 the volume of the original!

What happens to the volume of a cylinder with radius 4 in. and height 3 in. when you scale the radius?

h = 3 in.

Damien's "Double the Radius" Method

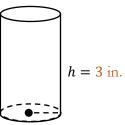
•

If I double the radius, I have a new radius of 8 in.

Let me calculate the volume with the new radius.

If I divide the new volume by the original, I see that doubling the radius causes the volume to be four times the original!

r = 8 in.


$$V = \pi r^2 h$$

$$V=\pi(8)^2(3)$$

$$V=192\pi~in.^3$$

$$\frac{192\pi}{48\pi} = 4$$

Sydney's "Halve the Radius" Method

r = 2 in.

 $V = \pi r^2 h$

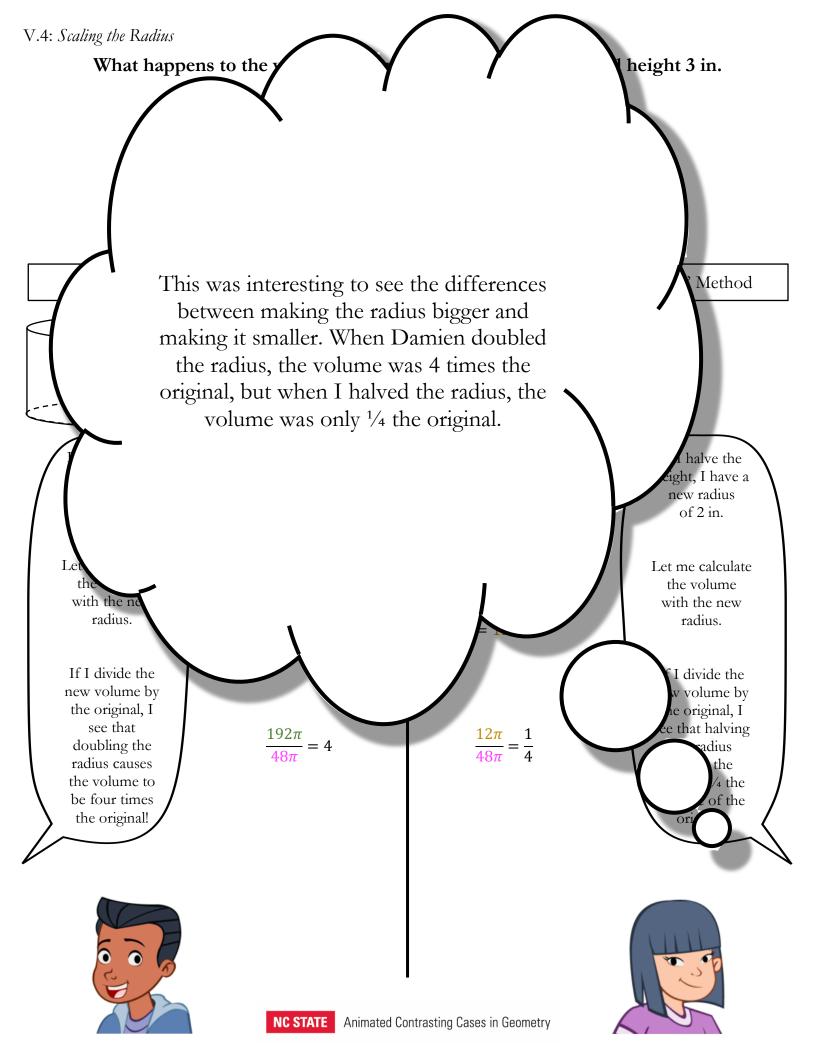
 $V = \pi(2)^2(3)$

 $V=12\pi in.^3$

 $\frac{12\pi}{48\pi} = \frac{1}{4}$

If I halve the height, I have a new radius of 2 in.

Let me calculate the volume with the new radius.


If I divide the new volume by the original, I see that halving the radius makes the volume 1/4 the volume of the original!

1) What are the similarities and differences between Damien and Sydney's methods?

Similarities	Differences
2) When you scale the height of a cylinder by some number, the volume is multiplied by that number. Why is that NOT true when you scale the radius?	
3) If a cylinder has a radius of 3 <i>in</i> . and a volume of 11 <i>in</i> . ³ , what would the new volume be if the radius were scaled to 9 <i>in</i> .?	
4) What happens to the volume of a cylinder if you multip	bly the radius by any number, x ?

