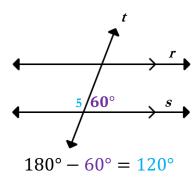
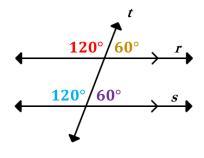

Lines r and s are parallel. Alex finds the relationship between $\angle 1 \& \angle 5$ and $\angle 2 \& \angle 6$. Morgan finds the relationship between $\angle 3 \& \angle 7$ and $\angle 4 \& \angle 8$.

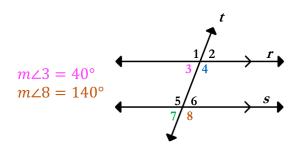


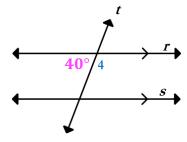


 $\begin{array}{c}
120^{\circ}/2 & r \\
 & \downarrow s \\
180^{\circ} - 120^{\circ} = 60^{\circ}
\end{array}$

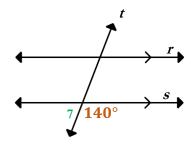
Because ∠5
and ∠6 are
supplementary, I
know that $180^{\circ} - 60^{\circ} = ∠5.$

∠1 and ∠5 are both 120°, and ∠2 and ∠6 are both 60°.

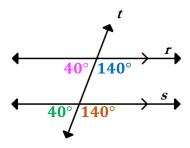


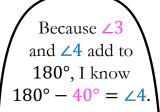


$$\angle 1 \cong \angle 5$$
 $\angle 2 \cong \angle 6$


Lines r and s are parallel. Alex finds the relationship between $\angle 1 \& \angle 5$ and $\angle 2 \& \angle 6$. Morgan finds the relationship between $\angle 3 \& \angle 7$ and $\angle 4 \& \angle 8$.

Morgan's "Below the Line" Method



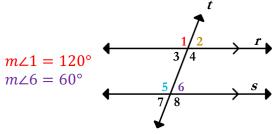

$$180^{\circ} - 40^{\circ} = 140^{\circ}$$

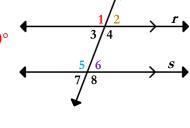
$$180^{\circ} - 140^{\circ} = 40^{\circ}$$

$$\angle 3 \cong \angle 7$$
 $\angle 4 \cong \angle 8$

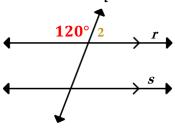
Because $\angle 7$ and $\angle 8$ add to 180° ,

I know that $180^{\circ} - 140^{\circ} = \angle 7$.

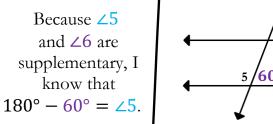

∠3 and ∠7 are both 40°, and ∠4 and ∠8 are both 140°.

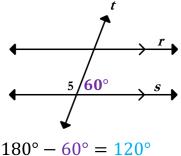


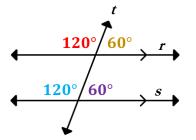
Lines r and s are parallel. Alex finds the relationship between $\angle 1 \& \angle 5$ and $\angle 2 \& \angle 6$. Morgan finds the relationship between $\angle 3 \& \angle 7$ and $\angle 4 \& \angle 8$.


Alex's "Above the Line" Method

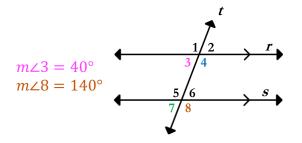
Morgan's "Below the Line" Method

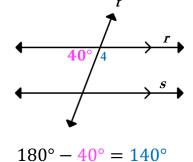


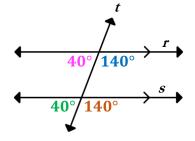

Because ∠1 and ∠2 are supplementary, I know that $180^{\circ} - 120^{\circ} = \angle 2$.



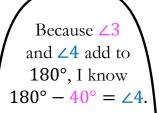
 $180^{\circ} - 120^{\circ} = 60^{\circ}$




 $\angle 1$ and $\angle 5$ are both 120°, and $\angle 2$ and $\angle 6$ are both 60°.



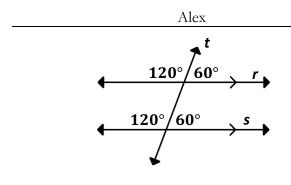
 $\angle 1 \cong \angle 5$ **∠2** ≅ ∠6



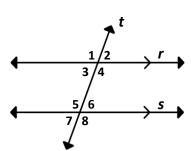
 $180^{\circ} - 140^{\circ} = 40^{\circ}$

 $\angle 3 \cong \angle 7$ $\angle 4 \cong \angle 8$

Because ∠7 and ∠8 add to 180°. I know that $180^{\circ} - 140^{\circ} = \angle 7$.


> $\angle 3$ and $\angle 7$ are both 40°, and ∠4 and ∠8 are both 140°.

1) What are the similarities and differences between Alex and Morgan's methods?


Similarities	Differences

2) Find the remaining angles for Alex and Morgan.

Morgan

3) a) Identify all the angles that are congruent to $\angle 1$.

- b) Identify all the angles that are congruent to $\angle 2$.
- c) What do you notice about the angles congruent to $\angle 1$ and $\angle 2$?
- 4) If lines r and s were not parallel, would Alex and Morgan have found the same relationships between their angles? Draw a picture to illustrate why or why not.

Animated Contrasting Cases in Geometry